Hepatitis C Virus and Zero Day: A Hacker's View of the Virospace

T. Jake Liang, MD Liver Diseases Branch, NIDDK, NIH

- Known as non-A non-B hepatitis for 20 years
- Discovered in 1989
- Flaviviridae family
- Positive single-stranded RNA genome
- Six genotypes with up to 30% sequence variations
- High mutational rates, quasipecies
- High rate of chronicity
- Silent disease progression
- No vaccine
- Treatment improving but not optimal

HCV Life Cycle

How about a zero day for HCV?

"In the face of great complexity, randomness is not an irrational process."

Gertrude Elion, Nobel Laureate

- Introduction of random "perturbagens" into virus-infected cells to force the virus to behave differently in order to reveal its secrets and identify its vulnerability
 - Small interfering RNAs
 - MicroRNAs
 - Chemical probes

Global Analysis of HCV-Host Interactions: Genome-Wide siRNA Screen

Global Analysis of HCV-Host Interactions: Genome-Wide siRNA Screen

HCV Interaction Network

IKK α is Required in HCV Propagation

Li et al, Nat Med, June 2013

Effect of IKK Inhibitors on HCV Infection

NF-kB Pathway

Gosh & Hayden Nat Rev Immunol 2008

- Antiviral response (IRF3, IRF7, IRF9): induction of IFN pathway
- IKKβ & IKKγ (NEMO) in canonical NF-κB activation
- IKKα (CHUK) in non-canonical pathway (NF-κB2)

Role of NF-κB in HCV Infection

Li et al, Nat Med, June 2013

Role of NF-kB in HCV Infection

HCV and **Steatosis**

Nonalcoholic steatohepatitis (NASH)

Lipid Droplet Formation and IKK α

- HCV infection induces LD formation that co-localizes with HCV core
- IKK α mediates the effect of HCV on LD formation

Effect of IKK α on LD Formation

Mechanism of LD Biogenesis in HCV Infection

Pathogen-Associated Molecular Pattern

- Binds to RIG-I and activates IRF3
- Induces interferon-β production (Saito et al, Nature 2008)

- IKKα is involved in LD biogenesis
- HCV induces LD biogenesis that is mediated by IKKlpha
- The HCV PAMP is responsible for this effect

Effect of HCV Infection on IKKα

 HCV infection results in IKKα phosphorylation and nuclear localization

Localization of IKK α in HCV Infected Cells

HCV induces nuclear translocation of IKKα

Role of IKKα in HCV Infection by Microarray Gene Expression Analysis

• HCV infection induces IKK α -mediated expression of lipid metabolism genes including SREBP-1 and -2

Role of SREBPs in HCV Infection

- HCV PAMP induces expression of SREBP-1 and -2 and other lipid metabolism genes
- SREBP-1 and -2 are important for HCV propagation

Role of IKK α in SREBP Expression

• IKK α plays a critical role in the transcriptional regulation of SREBP-1 and -2

Summary & Conclusion

- Genome-wide screen identifies novel host factors required for HCV infection and propagation
- One of the novel host pathways in HCV life cycle involves IKK α
- Unlike the other factors in NF- κ B pathway that have antiviral effects, IKK α exerts a predominantly proviral effect
- IKKα plays an important role in the assembly step of HCV life cycle

Summary & Conclusion

- HCV infection activates IKK α , which transcriptionally induces the expression of SREBP-1 and -2
- Activation of lipogenic genes and lipid droplet formation by SREBPs facilitates HCV assembly
- HCV exploits the host immune response and hijacks host lipid metabolism to its advantage
- Identification of novel host pathways in HCV life cycle has major implications in anti-HCV therapeutics

MicroRNAs as Perturbagens

MicroRNA Biogenesis Pathway

MicroRNA in Viral Infections

- Viral miRNAs affect host gene expression
- Host miRNAs modulate viral gene expression & life cycle
- MiR-122 plays a critical role in HCV replication (Jopling et al, Science 2005)
- Inhibitor of miR-122 is being developed as anti-HCV therapy (Lanford et al, Science 2010; Janssen et al, NEJM 2013)
- Other miRNAs implicated in HCV life cycle via regulation of host factors (Hou et al, Hepatology 2010; Banaudha et al, Hepatology 2011)

MiRNA Mimics and Inhibitors as Tools to Explore Biology

Endogenous Protein Expression

Global Analysis of HCV-Host Interactions: Genome-Wide miRNA Screen

Global Analysis of HCV-Host Interactions: Genome-Wide miRNA Screen

Selection Criteria

- Fold-increase/decrease ≥ 2 folds & P < 0.0025
- Viable cell numbers not decreased by ≥50% from the plate mean

Global Analysis of HCV-Host Interactions: Genome-Wide miRNA Screen

Optimization of Cell-Based Assays for High-Throughput Screen

- Simplicity
- Minimal manipulation
- 1536-well plate format
- High signal-to-noise ratio
- Robust reproducibility (Z-factor>0.5 & coefficient of variation<30%)
- Quantitative HTS format: titration-based approach (Inglese et al, PNAS 2006)
- Cytotoxicity

Quantitative High-Throughput Screen of Small Molecule Chemical Libraries: Primary Screen

Hu et al. unpublished

Quantitative High-Throughput Small Molecule Library Screen: Confirmatory Screen

Hu et al. unpublished

Quantitative High-Throughput Small Molecule Library Screen: Secondary Screen

Quantitative High-Throughput Small Molecule Library Screen

- Selection of Lead Compounds
 - –High potency & efficacy
 - –No toxicity
 - -Targeting defined stage of HCV life cycle
 - -Structural bioinformatics
 - Drug-like properties
 - Novel structural classes

• 5 lead compounds (1 targeting entry, 1 replication, 3 assembly) selected for SAR, chemistry and further development

Are we at zero day for hepatitis C yet?

Not yet, but we are close!

21 February 2012 Annals of Internal Medicine Volume 156 • Number 4 317

Annals of Internal Medicine

Hepatitis C: The End of the Beginning and Possibly the Beginning of the End

Harvey J. Alter, MD T. Jake Liang, MD National Institutes of Health Bethesda, MD 20892

Liver Diseases Branch, NIDDK, NIH

Q. Frank Li

Veronique Pene

Helen Cha

Zongyi Hu

Melissa He

Virginia Chu

Abraham Brass Stephen Elledge Aylwin Ng Ramnik Xavier

NCGC/NCATS:

Wei Zheng Xin Hu **Noel Southall Marc Ferrer Juan Marugan** Jingbo Xiao